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Abstract
In order to describe dielectric properties in dense plasmas, a consistent
calculation of the collision frequency is required. We present new calculations
for an electron gas at parameters which are relevant for warm dense matter.
In particular, we focus on the influence of the different approximations for
the collision frequency in the Gould–DeWitt scheme. We use the dynamic
collision frequency in the Born, Lenard–Balescu and ladder approximation.
The inclusion of collisions in a consistent manner modifies, e.g., the dielectric
function significantly in the warm dense matter regime.

PACS numbers: 52.25.Os, 52.70.La, 61.10.Eq, 71.10.Ca

1. Introduction

For a charged particle system, the longitudinal dielectric function ε(�k, ω) contains important
information about different physical properties. It can be directly related to the wavevector
(�k) and frequency (ω) dependent conductivity σ(�k, ω) describing transport phenomena
via ε(�k, ω) = 1 + iσ(�k, ω)/(ε0ω). In particular, optical properties such as refraction
index, absorption coefficient, reflectivity and bremsstrahlung are obtained considering the
long wavelength limit of the dielectric function ε(0, ω) or the dynamical conductivity
σ(0, ω) = σ(ω), respectively, (see [1–3]).

The simplest approximation for the dielectric function is the random phase approximation
(RPA) for a collisionless plasma. Going beyond the RPA in the long-wavelength limit,
the dielectric function is related to the complex valued dynamic collision frequency via a
generalized Drude expression [2, 4]

ε(ω) = 1 − ω2
pl

ω[ω + iν(ω)]
, (1)

with the electronic plasma frequency ω2
pl = nee

2/(ε0me). In [5, 6], we have demonstrated that
it is necessary to go beyond the RPA by including collisions in order to obtain reliable results

0305-4470/06/174365+04$30.00 © 2006 IOP Publishing Ltd Printed in the UK 4365

http://dx.doi.org/10.1088/0305-4470/39/17/S09
mailto:heidi.reinholz@uni-rostock.de
http://stacks.iop.org/JPhysA/39/4365


4366 R Thiele et al

for plasma properties in the warm dense matter region. The dynamic collision frequency ν(ω)

has to be calculated taking into account the effects of dynamic screening and strong collisions.
In this paper, we apply the Gould–DeWitt [7] scheme to determine the dynamic collision
frequency for a free electron plasma.

2. Dynamic collision frequency

Within the Zubarev approach of a linear response theory, the dynamic collision frequency is
expressed according to

ν(ω) = �0

ε0kBT ω2
pl

〈
J̇

el

k ; J̇
el

k

〉
ω+iη, (2)

where Jk is the electric current operator and �0 is a normalization volume. The angle brackets
denote the equilibrium correlation function (see [2]). This expression was evaluated using a
consistent many-particle theory. In Born approximation we obtain [2]

νBorn = −i
ε0ni�

2
0

6π2e2neme

∫ ∞

0
dq q6V (q)2Sii(q)

1

ω
[εRPA(q, ω) − εRPA(q, 0)], (3)

where V (q) is the pure Coulomb potential, εRPA is the RPA dielectric function. Since we
consider a singly charged plasma, the electron and ion density ni and ne, respectively, are
identical. The static ion structure factor Sii(q) accounts for ion correlations, which are
particularly important in highly ionized materials. Equation (3) gives the electron–ion collision
frequency. In order to include electron–electron collisions, higher orders in the expansion of
the correlation functions have to be considered [2, 3].

Dynamic screening can be treated by a partial summation of loop diagrams introducing a
screened interaction when considering the polarization function. In adiabatic approximation,
the collision frequency reads [2]

νLB(ω) = i
ε0ni�

2
0

6π2e2neme

∫ ∞

0
dq q6V (q)2Sii(q)

1

ω

[
ε−1

RPA(q, ω) − ε−1
RPA(q, 0)

]
. (4)

This treatment corresponds to solving the linearized Lenard–Balescu equation, which is
denoted by the index LB. The ion structure factor in equations (3) and (4) is assumed to
be Sii(q) = 1. For the inclusion of strong collisions, a systematic treatment is obtained by
performing a summation of ladder diagrams with respect to a statically screened Coulomb
potential. The real part of the collision frequency in ladder approximation can be expressed
by an integral over the momentum space and summation over the angular momentum [2]:

Re νLadder(ω) = β�2
0

3π3h̄

∫ ∞

0
dpp2

∫ ∞

0
dp′p′2 1 − e−βh̄ω

βh̄ω
δ

(
p2 − p′2 +

2meω

h̄

)
f e

p

∞∑
l=0

(l + 1)

× [{
p′T −

l

(
p, p′;Ee

p

) − pT −
l+1

(
p, p′;Ee

p′
)}

× {
p′T +

l

(
p′, p;Ee

p

) − pT +
l+1

(
p′, p;Ee

p′
}

+
{
pT −

l

(
p, p′;Ee

p′
) − p′T −

l+1

(
p, p′;Ee

p

)}
× {

pT +
l

(
p′, p;Ee

p′
) − p′T +

l+1

(
p′, p;Ee

p

)}]
, (5)

where f e
p is the Maxwell–Boltzmann distribution function and Tl(p, p′;Ep) is the half-off-

shell T-matrix with respect to the angular momentum l. The imaginary part of the collision
frequency was calculated via the Kramers–Kronig relation.
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Figure 1. Re ν (left) and Imν (right) for plasmas with a density of 1021 cm−3 and temperatures of
0.5 eV, 2.0 eV and 8.0 eV.

3. The Gould–DeWitt approach

To account for screening as well as strong collisions, both types of correlations should be
combined within a dynamically screened T-matrix approximation. However, because of the
multifrequency character of such an approximation, no tractable expressions for the correlation
functions have been derived so far. Following Gould and DeWitt [7], both effects are combined
by adding up the two contributions. As an approximation for the dynamically screened T-
matrix expression, we decompose ν(ω) according to [2]

νGD(ω) = ν ladder(ω) + νLB(ω) − νBorn(ω). (6)

The Born approximation is taken into account dynamically (LB). Since the T-matrix with
respect to a statically screened potential also contains a contribution in the Born approximation,
the Born approximation with respect to the statically screened Coulomb potential is subtracted
in order to avoid double counting. This so-called Gould–DeWitt approach has been widely
used to treat the effects of distant as well as of close collisions in a dense plasma (see [8–10]).

We calculate the dynamic collision frequency, equation (6), for a density of ne =
1021 cm−3 and three different temperatures of Te = 0.5 eV, 2.0 eV and 8.0 eV. The influence
of collisions is most important in this domain as shown in [5, 6]. In figure 1, the real parts
of the dynamic collision frequency are displayed on the left side. Besides the Gould–DeWitt
result, the contributions from dynamic screening, equation (4), strong collisions, equation (5),
as well as the statically screened Born approximation, equation (3), are compared. In the high-
frequency limit, the dynamic and static screening results almost coincide, since Re ε(q, ω) ≈ 1.
As a consequence, the Gould–DeWitt result is dominated by the contribution of strong
collisions. For lower temperatures, the influence of the dynamically screened potential is very
strong. The peak close to the plasma frequency is due to plasmon excitations. The influence
of the Lenard–Balescu term near the plasma frequency decreases with higher temperatures.
For the highest temperature of 8 eV, strong collisions dominate the Gould–DeWitt result. The
imaginary parts of the collision frequency are shown on the right side of figure 1. As for



4368 R Thiele et al

the real part, the influence of dynamic screening is most important at low temperatures for
frequencies close to the plasma frequency. For higher frequencies, the Gould–DeWitt result
is again dominated by the contribution of strong collisions. For the considered density and
temperature domain, we conclude that the modifications of the collision frequency within the
Gould–DeWitt scheme are important for a correct description of the correlations.

4. Conclusions

We have shown that the influence of dynamic screening and strong collisions in the warm dense
matter region is significant. For low temperatures, the contribution of the Lenard–Balescu
collision frequency is important and for higher temperatures strong collisions dominate. In
the next step, the influence of higher moments of the distribution function on the collision
frequency will be treated by a renormalization factor [2]. These results can be used to
further investigate the Thomson scattering in dense plasmas [5, 6, 11]. The dynamic structure
factor relevant for the description of Thomson scattering and directly related to the dielectric
function is strongly influenced by collisions in a region with a degeneracy parameter 
 ≈ 1
and coupling parameters � � 1. In particular, this applies to conditions relevant for the next
stage of the free electron laser at DESY Hamburg. Therefore, the use of Thomson scattering
as a diagnostic tool for warm and dense matter requires to go beyond the standard RPA
description and to account for a dynamic collision frequency. For a complete description of
Thomson scattering, ions and bound states have to be considered as well.

Acknowledgments

The authors would like to thank for the kind hospitality during the SCCS conference in Moscow
as well as for the financial support by INTAS Conference Organization Grant, INTAS Ref
Nr. 05-98-001. Further, we acknowledge fruitful discussions with S H Glenzer, A Höll,
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